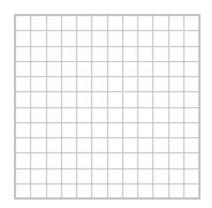

Graph each function.


1.
$$f(x) = \begin{cases} -x + 1 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

$$f(x) = \begin{cases} -1 & \text{if } x < 1 \\ 2x - 2 & \text{if } x \ge 1 \end{cases}$$

1.
$$f(x) =\begin{cases} -x + 1 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$
 2. $f(x) =\begin{cases} -1 & \text{if } x < 1 \\ 2x - 2 & \text{if } x \ge 1 \end{cases}$ 3. $f(x) =\begin{cases} |x| & \text{if } x \le 3 \\ 2x + 3 & \text{if } x > 3 \end{cases}$

Evaluate the function for the given values.

4.
$$f(x) = \begin{cases} |x| & \text{if } x \le 3 \\ 2x+3 & \text{if } x > 3 \end{cases}$$
 $g(x) = \begin{cases} x^2 & \text{if } x \le 0 \\ 2x-7 & \text{if } x > 0 \end{cases}$;

$$g(x) = \begin{cases} x^2 & \text{if } x \le 0 \\ 2x - 7 & \text{if } x > 0 \end{cases}$$

a.
$$f(-2)$$

c.
$$g(4)$$

d.
$$g(0)$$

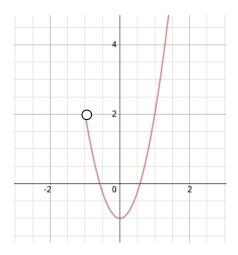
5. The cost of electricity is \$.003 per Kwh for the first 500 Kwh. Any amount over 500 Kwh costs \$.004 per Kwh. Write a piecewise-defined function for the total cost of electricity.

Given $f(x) = 25 - x^2$ and $g(x) = 5 - x + 2x^2$. Find

$$\mathsf{6.}(f\circ g)(x)$$

Find the inverse.

7.
$$f(x) = 5x - 2$$

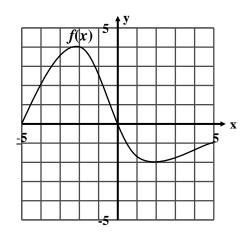

8.
$$f(x) = 4x + \frac{2}{3}$$

9. List the ways you can verify if two functions are inverses.

a. Use composition to verify that
$$f(x)$$
 and $g(x)$ are inverses $f(x) = 3x^2 + 3$

$$g(x) = \sqrt{\frac{x-3}{3}}$$

10. State the domain and range for the graph.



- 11. You are a sales representative for an automotive manufacturer. You are paid an annual salary plus a bonus of 3% of your sales over \$500,000. Consider the two functions: S(x) = x 500,000 and B(x) = 0.03x
 - a. Find S(B(x))
 - b. Find B(S(x))
 - c. Assume that x is greater than \$500,000. Which composite function above would represent your bonus?
- 12. Find the inverse of $g(x) = \frac{3x}{2x+5}$?

13. Given the graph, evaluate the following:

$$f(2) = f(-5) =$$

x when f(x) = 2

14. Given g(x) = 3x - 1 and f(x) from problem 13, evaluate the following:

$$f(g(2)) =$$

$$g(f(2)) =$$