EXERCISES

See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

VOCABULARY: Fill in the blanks.

- 1. A rectangular array of real numbers that can be used to solve a system of linear equations is called a ...
- 2. A matrix is ______ if the number of rows equals the number of columns.
- 3. For a square matrix, the entries $a_{11}, a_{22}, a_{33}, \ldots, a_{nn}$ are the _____ entries.
- 4. A matrix with only one row is called a _____ matrix, and a matrix with only one column is called a _____ matrix.
- **5.** The matrix derived from a system of linear equations is called the _____ matrix of the system.
- 6. The matrix derived from the coefficients of a system of linear equations is called the _____ matrix of the system.
- 7. Two matrices are called ______ if one of the matrices can be obtained from the other by a sequence of elementary row operations.
- **8.** A matrix in row-echelon form is in _____ if every column that has a leading 1 has zeros in every position above and below its leading 1.

SKILLS AND APPLICATIONS

In Exercises 9–14, determine the order of the matrix.

11.
$$\begin{bmatrix} 2\\36\\3 \end{bmatrix}$$

13.
$$\begin{bmatrix} 33 & 45 \\ -9 & 20 \end{bmatrix}$$

12.
$$\begin{bmatrix} -3 & 7 & 15 & 0 \\ 0 & 0 & 3 & 3 \\ 1 & 1 & 6 & 7 \end{bmatrix}$$

14.
$$\begin{bmatrix} -7 & 6 & 4 \\ 0 & -5 & 1 \end{bmatrix}$$

In Exercises 15-20, write the augmented matrix for the system of linear equations.

15.
$$\begin{cases} 4x - 3y = -5 \\ -x + 3y = 12 \end{cases}$$
 16.
$$\begin{cases} 7x + 4y = 22 \\ 5x - 9y = 15 \end{cases}$$

$$\begin{cases} 4x - 3y = -5 \\ -x + 3y = 12 \end{cases}$$
 16. $\begin{cases} 7x + 4y = 22 \\ 5x - 9y = 15 \end{cases}$

17.
$$\begin{cases} x + 10y - 2z = 2\\ 5x - 3y + 4z = 0 \end{cases}$$

17.
$$\begin{cases} x + 10y - 2z = 2 \\ 5x - 3y + 4z = 0 \\ 2x + y = 6 \end{cases}$$
18.
$$\begin{cases} -x - 8y + 5z = 8 \\ -7x - 15z = -38 \\ 3x - y + 8z = 20 \end{cases}$$
19.
$$\begin{cases} 7x - 5y + z = 13 \end{cases}$$
20.
$$\begin{cases} 9x + 2y - 3z = 20 \end{cases}$$

19.
$$\begin{cases} 7x - 5y + z = 13 \\ 19x - 8z = 10 \end{cases}$$

20.
$$\begin{cases} 9x + 2y - 3z = 20 \\ -25y + 11z = -5 \end{cases}$$

In Exercises 21-26, write the system of linear equations represented by the augmented matrix. (Use variables x, y, z, and w, if applicable.)

21.
$$\begin{bmatrix} 1 & 2 & \vdots & 7 \\ 2 & -3 & \vdots & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & \vdots & 7 \\ -3 & \vdots & 4 \end{bmatrix}$$
 22. $\begin{bmatrix} 7 & -5 & \vdots & 0 \\ 8 & 3 & \vdots & -2 \end{bmatrix}$

$$\begin{bmatrix} \vdots & 0 \\ \vdots & -2 \end{bmatrix}$$

$$23. \begin{bmatrix} 2 & 0 & 5 & \vdots & -12 \\ 0 & 1 & -2 & \vdots & 7 \\ 6 & 3 & 0 & \vdots & 2 \end{bmatrix}$$

24.
$$\begin{bmatrix} 4 & -5 & -1 & \vdots & 18 \\ -11 & 0 & 6 & \vdots & 25 \\ 3 & 8 & 0 & \vdots & -29 \end{bmatrix}$$

$$25. \begin{vmatrix} 9 & 12 \\ -2 & 18 \\ 1 & 3 \end{vmatrix}$$

$$\begin{bmatrix} 1 & 7 & -8 & 0 & \vdots & -4 \\ 3 & 0 & 2 & 0 & \vdots & -10 \\ \end{bmatrix} \begin{bmatrix} 6 & 2 & -1 & -5 & \vdots & -2 \\ -1 & 0 & 7 & 3 & \vdots \end{bmatrix}$$

26.
$$\begin{vmatrix} -1 & 0 & 7 & 3 & \vdots & 7 \\ 4 & -1 & -10 & 6 & \vdots & 23 \\ 0 & 8 & 1 & -11 & \vdots & -21 \end{vmatrix}$$

In Exercises 27–34, fill in the blank(s) using elementary row operations to form a row-equivalent matrix.

27.
$$\begin{bmatrix} 1 & 4 & 3 \\ 2 & 10 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 3 \\ 0 & -1 \end{bmatrix}$$

29.
$$\begin{bmatrix} 1 & 1 & 1 \\ 5 & -2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$$

31.
$$\begin{bmatrix} 1 & 5 & 4 & -1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & & & & \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -7 \end{bmatrix}$$

28.
$$\begin{bmatrix} 3 & 6 & 8 \\ 4 & -3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \frac{8}{3} \\ 4 & -3 & 6 \end{bmatrix}$$

31.
$$\begin{bmatrix} 1 & 5 & 4 & -1 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & -7 \end{bmatrix}$$
32.
$$\begin{bmatrix} 1 & 0 & 6 & 1 \\ 0 & -1 & 0 & 7 \\ 0 & 0 & -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & & & & \\ 0 & 1 & -2 & 2 \\ & & & & & \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 6 & 1 \\ 0 & 1 & 0 & & \\ 0 & 1 & 0 & & \\ \end{bmatrix}$$

33.
$$\begin{bmatrix} 1 & 1 & 4 & -1 \\ 3 & 8 & 10 & 3 \\ -2 & 1 & 12 & 6 \end{bmatrix}$$
34.
$$\begin{bmatrix} 2 & 4 & 8 & 3 \\ 1 & -1 & -3 & 2 \\ 2 & 6 & 4 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 4 & -1 \\ 0 & 5 & 2 & 2 \\ 0 & 3 & 3 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 4 & -1 \\ 0 & 1 & -\frac{2}{5} & \frac{6}{5} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 4 & \frac{3}{2} \\ 0 & 7 & \frac{1}{2} \end{bmatrix}$$

In Exercises 35–38, identify the elementary row operation(s) being performed to obtain the new row-equivalent matrix.

Original Matrix

New Row-Equivalent Matrix

35.
$$\begin{bmatrix} -2 & 5 & 1 \\ 3 & -1 & -8 \end{bmatrix}$$
 $\begin{bmatrix} 13 & 0 & -39 \\ 3 & -1 & -8 \end{bmatrix}$

0

$$\begin{bmatrix} 13 & 0 & -39 \\ 3 & -1 & -8 \end{bmatrix}$$

Original Matrix

New Row-Equivalent Matrix

36.
$$\begin{bmatrix} 3 & -1 & -4 \\ -4 & 3 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 & -4 \\ 5 & 0 & -5 \end{bmatrix}$$

Original Matrix

New Row-Equivalent Matrix

37.
$$\begin{bmatrix} 0 & -1 & -5 & 5 \\ -1 & 3 & -7 & 6 \\ 4 & -5 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 3 & -7 & 6 \\ 0 & -1 & -5 & 5 \\ 0 & 7 & -27 & 27 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 3 & -7 & 6 \\ 0 & -1 & -5 & 5 \\ 0 & 7 & -27 & 27 \end{bmatrix}$$

Original Matrix New Row-Equivalent Matrix

$$\begin{bmatrix}
-1 & -2 & 3 & -2 \\
2 & -5 & 1 & -7 \\
5 & 4 & -7 & 6
\end{bmatrix}$$

$$\begin{bmatrix} -1 & -2 & 3 & -2 \\ 0 & -9 & 7 & -11 \\ 0 & -6 & 8 & -4 \end{bmatrix}$$

39. Perform the sequence of row operations on the matrix. What did the operations accomplish?

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & -4 \\ 3 & 1 & -1 \end{bmatrix}$$

- (a) Add -2 times R_1 to R_2 .
- (b) Add $-3 \text{ times } R_1 \text{ to } R_3$.
- (c) Add -1 times R_2 to R_3 .
- (d) Multiply R_2 by $-\frac{1}{5}$.
- (e) Add -2 times R_2 to R_1 .

40. Perform the sequence of row operations on the matrix. What did the operations accomplish?

$$\begin{bmatrix}
7 & 1 \\
0 & 2 \\
-3 & 4 \\
4 & 1
\end{bmatrix}$$

- (a) Add R_3 to R_4 .
- (b) Interchange R_1 and R_4 .

- (c) Add 3 times R_1 to R_3 .
- (d) Add $-7 \text{ times } R_1 \text{ to } R_4$.
- (c) Multiply R_2 by $\frac{1}{2}$.
- (f) Add the appropriate multiples of R_2 to R_1 , R_3 , and R_4 .

In Exercises 41-44, determine whether the matrix is in row-echelon form. If it is, determine if it is also in reduced row-echelon form.

$$\mathbf{41.} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{42.} \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

43.
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

44.
$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

In Exercises 45–48, write the matrix in row-echelon form. (Remember that the row-echelon form of a matrix is not unique.)

45.
$$\begin{bmatrix} 1 & 1 & 0 & 5 \\ -2 & -1 & 2 & -10 \\ 3 & 6 & 7 & 14 \end{bmatrix}$$

46.
$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 3 & 7 & -5 & 14 \\ -2 & -1 & -3 & 8 \end{bmatrix}$$

$$47. \begin{bmatrix}
1 & -1 & -1 & 1 \\
5 & -4 & 1 & 8 \\
-6 & 8 & 18 & 0
\end{bmatrix}$$

45.
$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ -2 & -1 & 2 & -10 \\ 3 & 6 & 7 & 14 \end{bmatrix}$$
46.
$$\begin{bmatrix} 3 & 7 & -5 & 14 \\ -2 & -1 & -3 & 8 \end{bmatrix}$$
47.
$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 5 & -4 & 1 & 8 \\ -6 & 8 & 18 & 0 \end{bmatrix}$$
48.
$$\begin{bmatrix} 1 & -3 & 0 & -7 \\ -3 & 10 & 1 & 23 \\ 4 & -10 & 2 & -24 \end{bmatrix}$$

In Exercises 49–54, use the matrix capabilities of a graphing utility to write the matrix in reduced row-echelon form.

49.
$$\begin{bmatrix} 3 & 3 & 3 \\ -1 & 0 & -4 \\ 2 & 4 & -2 \end{bmatrix}$$
 50.
$$\begin{bmatrix} 1 & 3 & 2 \\ 5 & 15 & 9 \\ 2 & 6 & 10 \end{bmatrix}$$

50.
$$\begin{bmatrix} 1 & 3 & 2 \\ 5 & 15 & 9 \\ 2 & 6 & 10 \end{bmatrix}$$

51.
$$\begin{bmatrix} 1 & 2 & 3 & -5 \\ 1 & 2 & 4 & -9 \\ -2 & -4 & -4 & 3 \\ 4 & 8 & 11 & -14 \end{bmatrix}$$

52.
$$\begin{vmatrix} -2 & 3 & -1 & -2 \\ 4 & -2 & 5 & 8 \\ 1 & 5 & -2 & 0 \\ 3 & 8 & -10 & -30 \end{vmatrix}$$

53.
$$\begin{bmatrix} -3 & 5 & 1 & 12 \\ 1 & -1 & 1 & 4 \end{bmatrix}$$
 54. $\begin{bmatrix} 5 & 1 & 2 & 4 \\ -1 & 5 & 10 & -32 \end{bmatrix}$

In Exercises 55-58, write the system of linear equations represented by the augmented matrix. Then use backsubstitution to solve. (Use variables x, y, and z, if applicable.)

55.
$$\begin{bmatrix} 1 & -2 & \vdots & 4 \\ 0 & 1 & \vdots & -3 \end{bmatrix}$$
 56. $\begin{bmatrix} 1 & 5 & \vdots & 0 \\ 0 & 1 & \vdots & -1 \end{bmatrix}$