\qquad
Graphing Exponential Functions Guided Notes
Collected / Not Collected
Your goal today is to determine the characteristics of the graphs of exponential functions. In an exponential function, the variable is an exponent. The parent function is $f(x)=b^{x}$ where b is any real number greater than 0 , except 1 .

1 EXAMPLE Graphing $f(x)=b^{x}$ for $b>1$

Graph $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2}^{\boldsymbol{x}}$. Complete the table below. Graph the points and connect with a smooth curve.

x	$f(x)=2^{x}$
-3	$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$
-2	
-1	
0	
1	
2	
3	

1. What happens to $f(x)$ as x increases? What happens to $f(x)$ as x decreases?
2. Does the graph intersect the x-axis? Explain how you know.
3. What are the domain and range of $f(x)$?
4. In an exponential function, $f(x)=b^{x}$, b is not allowed to be 1 . Explain why this restriction exists.

2 EXAMPLE Graphing $f(x)=b^{x}$ for $0<b<1$
Graph $f(x)=\left(\frac{1}{\mathbf{2}}\right)^{\boldsymbol{x}}$. Complete the table below. Graph the points and connect with a smooth curve.

x	$f(x)=\left(\frac{1}{2}\right)^{x}$
-3	$\left(\frac{1}{2}\right)^{-3}=(2)^{3}=8$
-2	
-1	
0	
1	
2	
3	

5. What happens to $f(x)$ as x increases? What happens to $f(x)$ as x decreases?
6. How does the domain and range of $f(x)=\left(\frac{1}{2}\right)^{x}$ compare to the domain and range of $f(x)=2^{x}$?
7. What do you notice about the y-intercepts of the graphs of $f(x)=\left(\frac{1}{2}\right)^{x}$ and $f(x)=2^{x}$? Why does this make sense?
8. The graph of an exponential function, $f(x)=b^{x}$, is shown. Which of the labeled points, $(0,1)$ or $(1,5)$, allows you to determine the value of b ? Why doesn't the other point help?
a. What is the value of b ? Explain how you know?

