Pre-Calculus

Name _____

Graphing Exponential Functions Guided Notes

Collected / Not Collected

Your goal today is to determine the characteristics of the graphs of exponential functions. In an <u>exponential</u> <u>function</u>, the variable is an exponent. The parent function is $f(x) = b^x$ where *b* is any real number greater than 0, except 1.

1 EXAMPLE Graphing $f(x) = b^x$ for b > 1

Graph $f(x) = 2^x$. Complete the table below. Graph the points and connect with a smooth curve.

x	$f(x) = 2^x$
-3	$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$
-2	
-1	
0	
1	
2	
3	

- 1. What happens to f(x) as x increases? What happens to f(x) as x decreases?
- 2. Does the graph intersect the *x*-axis? Explain how you know.

- **3.** What are the domain and range of f(x)?
- 4. In an exponential function, $f(x) = b^x$, b is not allowed to be 1. Explain why this restriction exists. Worksheet and Images are adapted from the Holt McDougal Activity Generator version 1.1 copyright 2009 Houghton Mifflin Harcourt Publishing Company.

2 EXAMPLE Graphing $f(x) = b^x$ for $0 \le b \le 1$

Graph $f(x) = \left(\frac{1}{2}\right)^x$. Complete the table below. Graph the points and connect with a smooth curve.

x	$f(x) = \left(\frac{1}{2}\right)^x$
-3	$\left(\frac{1}{2}\right)^{-3} = (2)^3 = 8$
-2	
-1	
0	
1	
2	
3	

- 5. What happens to f(x) as x increases? What happens to f(x) as x decreases?
- 6. How does the domain and range of $f(x) = \left(\frac{1}{2}\right)^x$ compare to the domain and range of $f(x) = 2^x$?
- 7. What do you notice about the y-intercepts of the graphs of $f(x) = \left(\frac{1}{2}\right)^x$ and $f(x) = 2^x$? Why does this make sense?
- 8. The graph of an exponential function, $f(x) = b^x$, is shown. Which of the labeled points, (0, 1) or (1,5), allows you to determine the value of b? Why doesn't the other point help?
 - **a.** What is the value of b? Explain how you know?

